

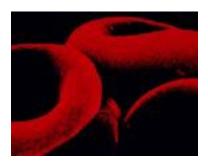
INTERVAL

Progress and future prospects

David Roberts On behalf of INTERVAL study team

Background

- INTERVAL Outline
- INTERVAL Progress
 - Recruitment
 - Outcome measures
- Possible answers
- > The next steps
- Future prospects



Goals: to provide evidence

What are the optimum intervals between donations to:

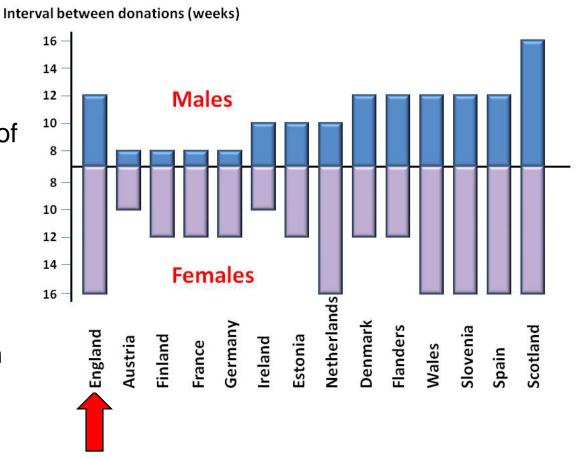
Minimise risk of iron deficiency

Maintain future blood supply?

Maintain wellbeing?

Is it appropriate to tailor blood donation intervals according to donors' susceptibility to iron deficiency?

Optimising donations...



Decrease interval between donations

- E.U. Blood Directive 2002/98/EC sets:
 - minimum donation intervals
 - maximum number of donations/yr

to minimise risk of iron deficiency in repeat blood donors

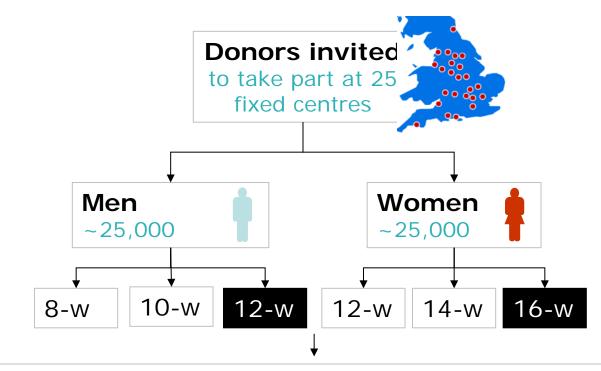
 BUT, no RCTs / definitive data to inform policies on donation frequency

Measuring broad range of outcomes to enable policymakers to make an informed decision on optimum donation intervals i.e. impact on:

Blood donations (primary)

Well-being (key secondary)

<u>**Cognitive function**</u> 10-minute online tests of fluid intelligence, memory, attention


Physical activity objective measures through accelerometers

Blood markers iron status e.g. serum ferritin

Cost effectiveness service / donor / societal and quality of life impact

Study design

Collect data and samples over a period of 2 years

Pragmatic trial in routine setting

Embedding research

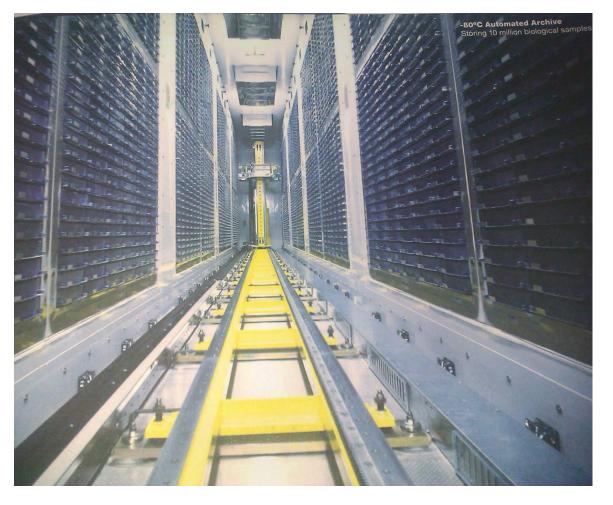
in routine practice

Fieldwork at existing centres by existing donation staff

NHSBT databases used to register donors / make follow-up visits

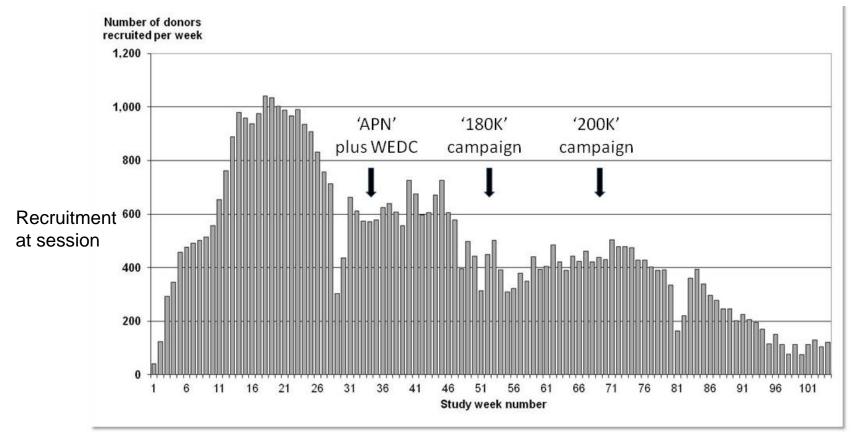
Similar sample collection protocols as samples for routine testing

Routine transport systems for sample transfer


Additional resources

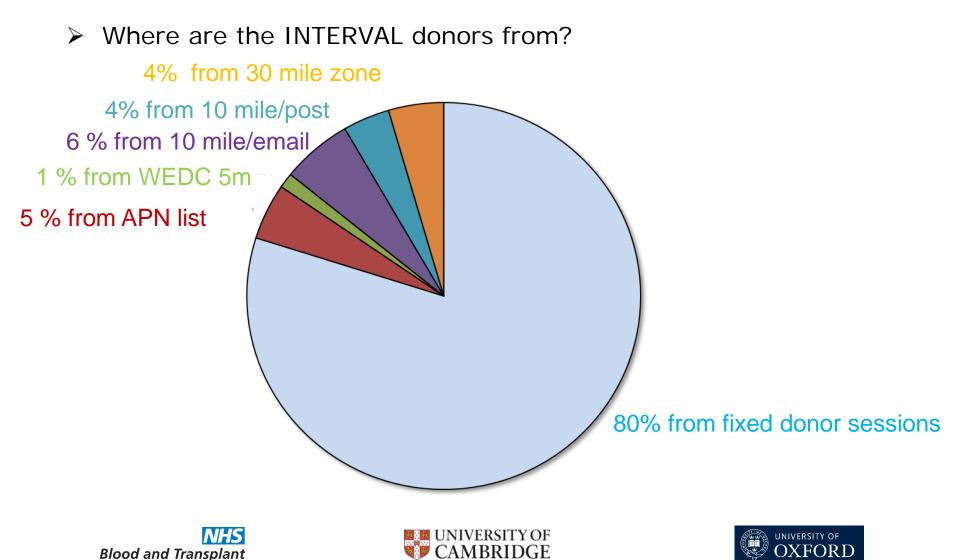
- NHSBT study administration team (appointments / reminders)
- Study helpline
- UK BioCentre services and facilities for collection of samples and processing, analysis and storage using automated processes/ protocols similar to those previously used in UK Biobank,

- FBCs
- Plasma
- Serum
 - ferritin, CRP.
 - hepcidin
- Buffy coat (DNA)
- Stored at Biocentre

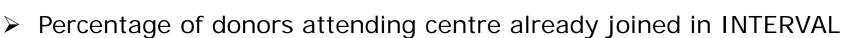


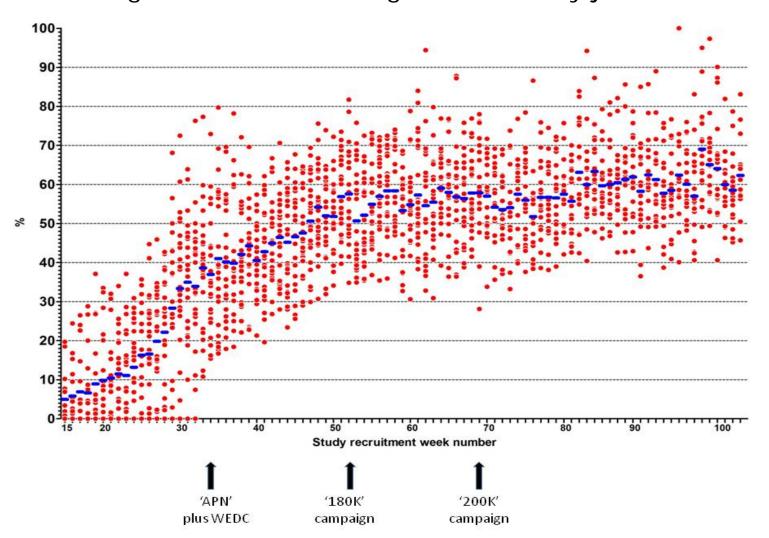
Achievements: recruitment

Staggered roll out of recruitment at a rate of one centre / week

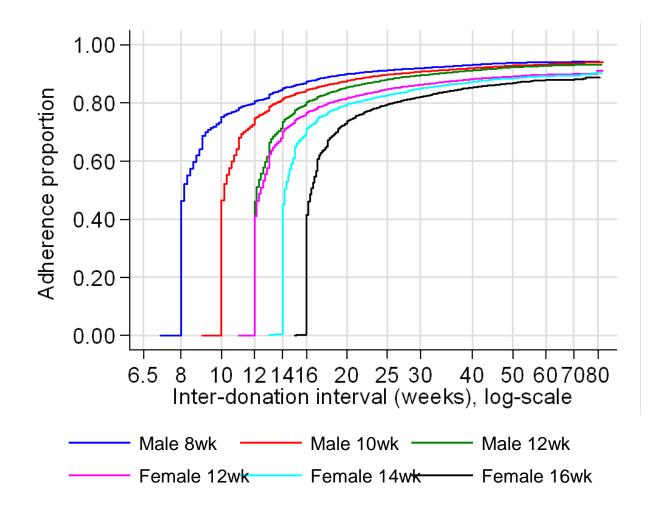

INTERVAL

- > All 25 centres involved in recruitment by end November 2012
- 50,000 donors recruited in 15 June 2014




Achievements: recruitment

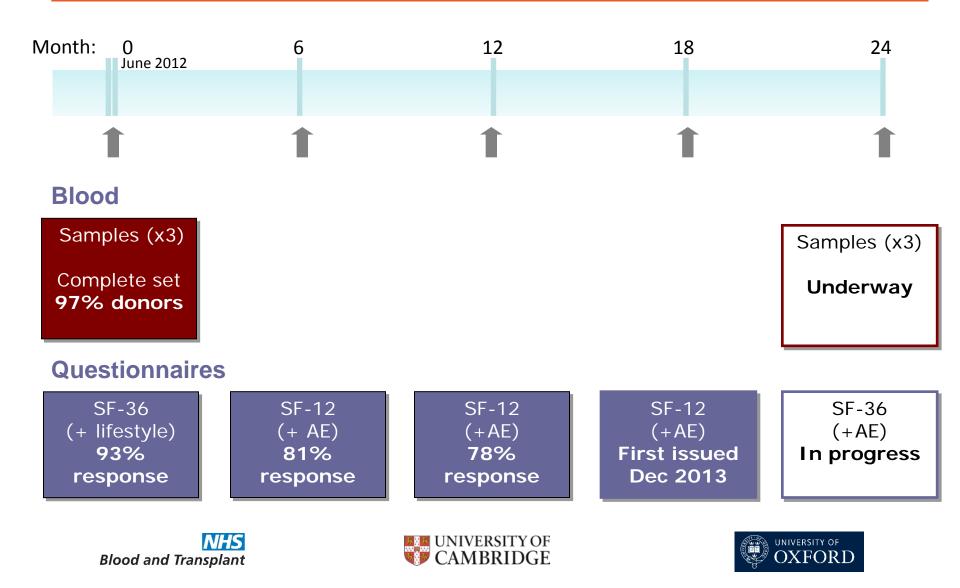
Achievements: recruitment



25 sites

INTERVAL

Protocol success: adherence (All donations)



Protocol success - collections

Blood sample management

3ml EDTA, 6ml EDTA and 6ml serum tubes collected at donor centres; **97%** retrieval rate.

Transported at RT to NHSBT holding sites, couriered to central laboratory (UK Biocentre)

98% processed within 1 day of collection
3ml EDTA – Full blood count (sysmex)
6ml EDTA – storage -80°C plasma and buffy coat
6ml serum – storage -80°C of serum

Sample analysis:

Genotyping using the state-of-the-art Affymetrix "Biobank" array containing ~820,000 variants plus imputation of at least 20M variants
 Customised to include blood group, platelet group, HLA and iron metabolism loci

Extended haematology profile | ~200 blood cell traits

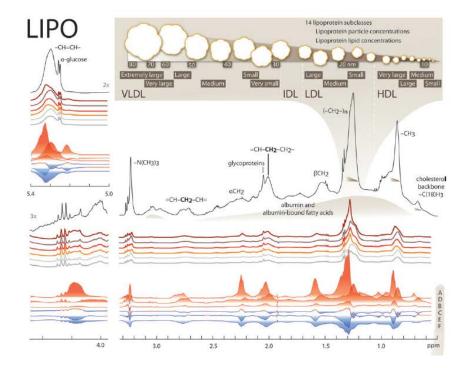
Clinical biomarkers

~ 40 analytes

	-		
		_	
	-	_	
	1 1		
3.4		5.0	

NMR metabolomics

~250 analytes



NMR metabolite profiling

~ 80 lipoprotein characteristics (e.g. lipoprotein size, cholesterol content, triglyceride content, phospholipid content etc.)

~ 20 serum lipid concentrations

> 20 low molecular weight metabolite concentrations (e.g. amino acids and other small metabolites)

>100 derived measures (e.g. metabolite ratios, reflecting enzyme activities) Wuertz et al, *Mol Bio Sys* 2010

Wuertz et al, *Mol Bio Sys* 2010 Kettunen et al, *Nat Genet* 2012

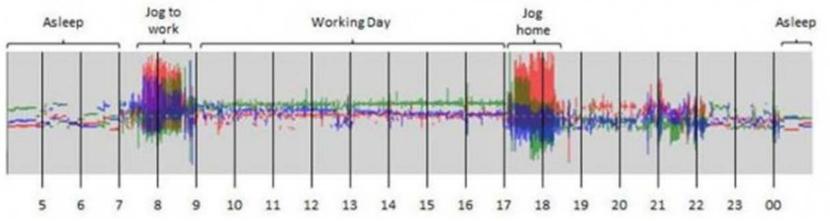
- Does giving blood frequently and/or iron deficiency impair physical or mental function?
 - ➤ symptoms of anaemia
 - > chest pain, headache, dizziness, palpitations
 - breathlessness (MRC questionnaire)
 - restless legs syndrome (Cambridge questionnaire),
 - ≻ pica
 - tests of neurocognitive function attention, concentration, reasoning, executive function
 - > physical activity

Other phenotypes

Physical activity profiling: 7 day accelerometer recordings

Cognitive function tests:

- Attention (Stroop test)
- Memory (Pairs test)
- Executive function (Trail test)
- Intelligence (Reasoning test)



Remote data collection

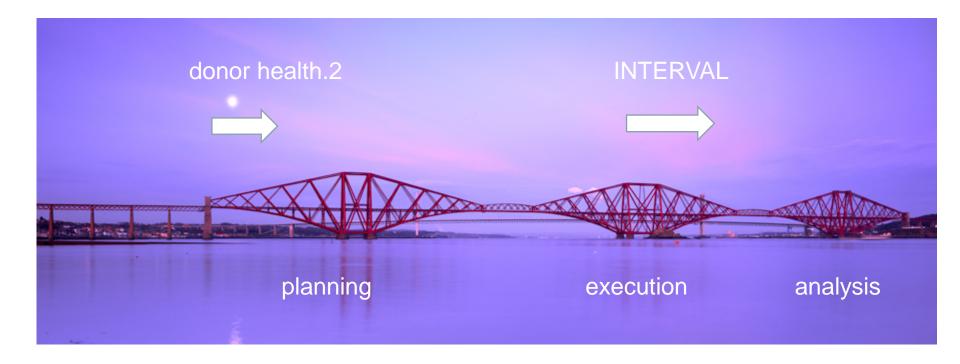
- 7000 participants
- Wrist-worn AX3 accelerometers to monitor changes in how fast and in what direction the body is moving
- Measure 3 directions of movement and each can be plotted on a chart to build up a picture of movement throughout the day

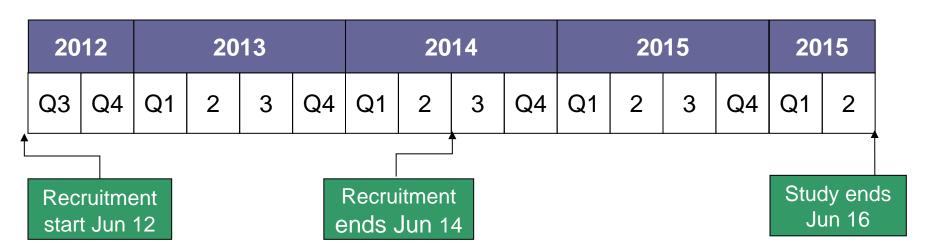
If deferral rates are higher

- Should and could we tailor blood donation intervals according to donors' susceptibility to iron deficiency?
- If iron deficiency affects physical and mental function
 - Should we aim to maintain iron stores
 - Tailor blood donation intervals
 - Dietary advice
 - Iron supplementation

If deferral rates are high

- Should we tailor blood donation intervals according to donors' susceptibility to iron deficiency?
- If iron deficiency affects physical and mental function
 - Should we aim to maintain iron stores
 - Tailor blood donation intervals
 - Dietary advice
 - Iron supplementation





Proposed continuation on study beyond 2 years

- Acceptability: Proportions of donors agreeing to continue?
- Sustainability: Impact on study outcomes (blood collected, wellbeing, donor deferrals) beyond 2 years?
- Donor management: Difference in the number of donations collected comparing "active" approaches to reminding of donors vs. "routine" reminding of donors?

- Factors affecting haemoglobin and iron stores over time
 - Full genome sequence in 20,000
 - Iron metabolism hepcidin
 - Modelling of trajectory of Hb and ferritin
- Stratification of donor care manage donors using their likely risk of deferral
 - Age, gender, weight, Hb, iron stores, genotype

Donor Health	2.0	N	lale dono	ors	
	Risk s	core quintile for deferral			
	1	2	3	4	5 (highest risk)
8-weeks	4%	8%	12%	16%	20%
10-weeks	3%	6%	8%	12%	15%
12-weeks	2%	4%	6%	8%	10%

	Risk score quintile for deferral					
	1	2	3	4	5 (highest risk)	
8-weeks	4%	8%	12%	16%	20%	
10-weeks	3%	6%	8%	12%	15%	
12-weeks	2%	4%	6%	8%	10%	
16-weeks					8%	

- Moving towards individual approach to donor care
 - Intervals
 - Appointments and reminders
 - Interventions to avoid deferral
 - Recall of donors for specific product requirement
 - Non invasive assessment of Hb and/or iron status

Who's involved and Acknowledgements

Trial Management Group

John Danesh (Co-CI) David Roberts (Co-CI) Willem Ouwehand (PI, Laboratory) Emanuele Di Angelantonio (Donor Health Consultant) Carmel Moore (Scientific Coordinator) Jennifer Sambrook (Laboratory Coordinator) Dave Allen (Post-Doc Research Scientist) Matthew Walker (Senior Data Manager) Claire Thomson (Project Officer) Susan Mehenny (Project Lead) Tracey Hammerton (Project Manager)

Steering Group Chair

Prof. Jane Armitage

Co-applicants / named collaborator

Simon Thompson, Cambridge (Biostatistics) Jonathon Mant, Cambridge (Clinical Trials) John Gallacher, Cardiff (Cognitive Function) Martin Daumer, Munich (Physical Activity) Dorine Swinkels, Eindhoven (Sample Assays) Fenella Kirkham, London (Neurology) Simon Cohn, Cambridge (Social Anthropology)

www.intervalstudy.org.uk

NHSBT management team

Lorna Williamson (Medical and Research Director) Clive Ronaldson (Director Blood Supply Chain) Jane Pearson (Asst. Director Blood Supply Chain) Nick Watkins (Asst. Director R&D)

BioCentre, Stockport

Kristian Spreckley

Sysmex

Fraser McGee Dean Hunter

Managers and staff of Donor Centres

Blood Donors

Funders NHSBT and NIHR

Bioresource has great breadth and depth

What studies would you suggest and would like to do?
 Staph aureus carriage
 CMV infection and load
 Component quality

