Gaining UKAS ISO15189 Accreditation: A Blood Transfusion Laboratory Perspective

Dawn Smith & Kerry Dowling

University Hospital Southampton NHS Foundation Trust

Overview

o CPA and ISO

- What's the same
- What's changed
- o Pre-inspection
- UHS inspection experience
- o Advice and possible solutions
 - Uncertainty, traceability, batch acceptance, validation and verification

Why ISO

- o 2009 CPA became wholly owned by UKAS
- Strategy for modernising pathology services
- UKAS managing transition of all CPA accredited laboratories to UKAS accreditation (ISO 15189:2012)
- o From October 2013

University Hospital Southampton **NHS Foundation Trust**

Inspections

- Assessed against CPA and ISO 15189 standards simultaneously
- Non-conformances raised against one or both sets of standards
- Clearing findings: 8 weeks (CPA),
 12 weeks (ISO)
- Subsequent inspections ISO 15189 only

CPA and ISO: What's the Same?

- Format of inspection visit (meetings and feedback)
- Multiple ways of meeting standard
- Assessment team looking for conformity

CPA and ISO: What's Different?

- Different approach and expectations of assessment
 - No vertical audits
- Different focus
 - Emphasis on the test
 - Move away from CPA focus on H&S and working environment
 - Validation, Traceability, Uncertainty of measurement, Equipment records, EQA/IQC, Staff suggestions, Competency assessment

MHRA and ISO

- What's already in place that will help:
 - Competency
 - Validation
 - Traceable calibration certificates
 - Batch acceptance
 - Return to service
- BUT- need to ensure in place in Haematology etc. too

University Hospital Southampton NHS Foundation Trust

Pre-inspection

o Preparation

- Gap analysis
- Audit
- Working groups

 List 2 weeks before with tests that they would inspect- adhered rigorously

University Hospital Southampton

UHS ISO Inspection

- 3 days 3 inspectors (plus UKAS expert)
- Test not assessed during visit assessed off-site after inspection
- o 27 findings
- Findings cleared April 2014
 - CPA accreditation May 2014
 - ISO accreditation subject to subject to review by an independent decision maker

Management Review (Standard 4.15)

Staff suggestions
 Review of requests and suitability of procedures and sample requirements

• Performance of suppliers

Batch Acceptance (Standard 5.3.2.3)

- More explicit than CPA
- o New lot OR shipment
- Reagents AND consumables
- When to test
 - Verified for performance BEFORE use in examination
- What to test
 - Product inserts
 - Initial physical quality check
 - QC/patient samples
 - Acceptance criteria

Return to Service (Standard 5.3.1.5)

 Following repair, maintenance or removal from direct control

 Verification of performance to meet specified acceptance criteria

Before being put back into use

IQC and EQA (Standards 5.6.2 and 5.6.3)

o IQC

- Failure procedure
- Trending

o EQA

Alternative approaches

Traceability of Measurement (Standard 5.3.1.4)

o " the property of the result of the measurement or the value of a standard, whereby it can be related to stated references, usually national or international standards, through a unbroken chain of comparisons all having stated uncertainties".

Traceability of measurement

- Metrological traceability
- What does this mean for a transfusion laboratory?
- Pipettes, balances- verification
- Blood fridge calibration
 - Main finding in BT
 - Gap in traceability
 - No current UK supplier ISO 17025 accredited to calibrate on-site
 - Post-calibration verification

University Hospital Southampton

Traceability Example

- o 20 readings- working and reference
- Calculation of uncertainty
 - $\sqrt{[SD(reference)^2 + SD(test)^2]} \times coverage factor$

• Calculation of bias

- Reference (UKAS certificate) + mean (workingreference value)
- Acceptance = Uncertainty + Bias
 - MHRA +/- 0.5°C
 - MHRA Cold Chain Clarifications 1&2 <u>http://www.transfusionguidelines.org.uk/regulation</u> <u>s/clarification/storage-and-distribution/cold-chain</u>
 - Adjusting alarm limits?

Validation and Verification of Examination Procedures (Standard 5.5.1)

- Stipulation on how to document validation/verification procedures
- Retrospective no cut-off
- o Loan equipment
- Choice of performance characteristics

Some Examples

o Precision

- Repeatability
- Between analysers

o Limit of detection

 Lowest value that can be detected reliably with pre-defined goal
 e.g. Anti-D = 0.05 IU/mL

Recent Analyser Retrospective Verification

o IQ/OQ from manufacturer

- o PQ
 - IQC precision test
 - Sample comparison with different analyser and between analysers
 - NEQAS evaluation in place of full sample comparison
 - Detection limits check
 - Interface verification
 - Uncertainty of measurement data review
 - Review of non-conformances

Uncertainty of Measurement (Standard 5.5.1.4 & Lab 12)

o Uncertainty

- " A parameter, associated with the result of a measurement, that characterises the dispersion of the values that could reasonably be attributed to the measurand."
- Measurand
 - " The specific quantity subject to measurement."

University Hospital Southampton NHS Foundation Trust

Theory of Uncertainty of Measurement

 Provides a quantitative indication of the level of confidence that a lab has in each measurement

• UKAS reasons:

- Inter- and intra- laboratory comparison
- User result interpretation
- Evaluation of all components including human error leading to uncertainty
- Identification of improvement areas
- Method validation

2 Types of Measurement Uncertainty

o Type A

- Derived from repeated measurements and statistical analysis
- o Type B
 - Derived from non-statistical means

 manufacturer's assay validation data
 intra individual biological variation
 professional opinion.

University Hospital Southampton NHS Foundation Trust

Uncertainty of Measurement-Application to Blood Transfusion

- Measurement uncertainties may be calculated using quantity values obtained by the measurement of quality control materials
 - Changes of reagent
 - Different operators
 - Scheduled instrument maintenance
- o IQC
- o Minimum of 6 months data

Blood Group Uncertainty

- Non-numerical values- positive predictive value or negative predictive value where uncertainty = (1-PPV) or (1-NPV)
- Report an uncertainty of Positives results as x%.
- o Blood group
- o QC run 1520 times in year
 - 1515 times true positive
 - 5 times false positive
 - PPV = 1515/1520
 - Uncertainty= (1-0.97)*100%
- Uncertainty =0.3%

Conclusion and Take-Away Advice

o Change in focus

- CPA findings for things never picked up before
- Achievable with existing resources if quality becomes part of everyone's role
- QPulse or equivalent to manage not only documents but also assets
- External suppliers: ISO 17025

University Hospital Southampton **NHS Foundation Trust**

