#### A rare *cD-/(C)D*- phenotype in an individual and production of anti-Rh17-like

A. McNeill<sup>1</sup>, S. Grimsley<sup>1</sup>, K. DeSay<sup>1</sup>, Y-W. Liew<sup>2</sup>, W-C. Tsoi<sup>3</sup> C-Y. Tong<sup>3</sup>, N. Thornton<sup>1</sup> G. Daniels<sup>1</sup>

1: IBGRL, NHSBT, Filton, UK.
2:ARCBS, Brisbane, Australia.
3: HKRCBTS, Kowloon, Hong Kong





#### Introduction

- Rh antigens are encoded by *RHD* and *RHCE*
- These 10 exon genes are closely linked on the short arm of chromosome 1 and share approximately 94% sequence homology



### Hybrid Haplotypes

- Exchange of genetic material between *RHD* and *RHCE* can result in hybrid genes
- This can cause weakened expression of some common Rh antigens and some rarer low frequency Rh antigens may also be expressed e.g the R<sup>N</sup> haplotype
- Lack of expression of RhCc or RhEe with normal or enhanced expression of RhD can also occur e.g –D–/–D–

# RHCE-D-CE Hybrid Haplotypes



Representation of –D– haplotype where exons 2-9 of *RHCE* were replaced with the corresponding exons of *RHD*.

# Case Study

- A 37 year old female patient of chinese descent, was referred to IBGRL from Hong Kong via Brisbane, Australia.
- Rh Phenotype D+, C+<sup>wk</sup>, c+, E–, e–
- In addition patients' cells Rh:–46 but their "anti-Rh32 had not worked"
- Plasma compatible with Rh<sub>null</sub> and -D-/-D- cells
- Two examples of Rh:32, –46 cells were found to react weakly

# Rh Phenotyping

| Extended<br>Rh<br>Phenotype | Anti-D | Anit-C | Anti-c | Anti-E | Anti-e | Anti-Rh 46 | Anti-Rh 32 | <b>Anti-hr</b> | Anti-hr <sup>B</sup> | Anti-Rh51-like | Anti-Rh 17 | Anti-Rh29 |
|-----------------------------|--------|--------|--------|--------|--------|------------|------------|----------------|----------------------|----------------|------------|-----------|
| Patient                     | +      | (+)    | +,     | -      | -      | -          | -          | -              | -                    | -              | -          | +         |
| Pos Ctl                     | +      | +      | +      | +      | +      | +          | +          | +              | +                    | +              | +          | +         |
| Neg Ctl                     | -      | -      | -      |        | -      | -          | -          | -              | -                    | -              | -          | -         |

\*Variable reactivity with anti-c () detected by absorbtion elution only

#### Genetics

- Sequence specific PCR results for the patient indicated D+ C- c+
- Allelic discrimination genotyping gave no result for E and e
- Gene specific PCR was attempted for all 10 exons of *RHD* and *RHCE*
- No PCR product was obtained for exons 4-9 of RHCE
- Genomic DNA sequencing showed:
  - No mutations in RHD
  - No mutations in exons 1,2,3 and 10 of RHCE

# Family Serology

| Rh Phenotype | Anti-D | Anit-C | Anti-c | Anti-E | Anti-e |
|--------------|--------|--------|--------|--------|--------|
| Mother       | +      | —      | +*     | —      | +      |
| Father       | +      | +      | -      | -      | +      |
| Brother      | +      | +      | -      | -      | +      |
| Sister       | +      | - †    | +*     | -      | -      |
| Pos Ctl      | +      | +      | +      | +      | +      |
| Neg Ctl      | —      | —      | -      | -      | —      |

\*Variable reactivity with anti-c

† No absorbtion elution studies performed

# Family genetics



#### Results

- Sequencing results suggest the presence of the hybrid allele RHCE\*CE-D(4-9)-CE
- Presence of some RhCcEe antigens indicates a gene that enables expression of Rh protein
- Heterozygosity for RHCE\*C and RHCE\*c indicates the presence of 2 RHCE alleles both lacking exons 4-9

# Why did allelic discrimnation PCR give "no result" for E and e



# Why was the sequence specific PCR C-?



#### Interpretation

- Expression of E and e is dependant on the Pro226Ala polymorphism present in exon 5 of RHCE
- c expression is determined by Pro103 in exon 2 of RHCE.
- C expression requires not only Ser103 but also RHCcEe amino acids from exon 5

#### Interpretation

- 3 examples anti-Rh17 (total RhCcEe) were negative with the patient's cells despite the presence of some RhCcEe antigen expression.
- This could suggest that there is not enough RhCcEe protein present or that is so altered that this broad specificity antibody cannot bind

#### Conclusions

- The patients' and her sister's unusual phenotype are most likely the result of compound heterozygosity for 2 hybrid *RHCE-D-CE* genes both lacking at least exons 4-9
- The antibody that this patient has produced is best described as anti-Rh17like

### **Further Investigation**

- Genomic DNA sequencing cannot distinguish between homozygous and hemizygous
- cDNA sequencing could reveal the precise gene organisation in these individuals

THANK-YOU Any Questions

#### Acknowledgements

Shane Grimsley Nicole Thornton Geoff Daniels Karen DeSay

Y.W Leiw W-C. Tsoi C-Y. Tong