

The Development and GMP manufacture of adoptive T cell therapies

Ryan Guest University of Manchester – Cellular Therapeutics Unit

Overview

- T cell immunotherapy overview
- Origin of the University of Manchester CTU
- ATMP products & current clinical trials and treatments
- Associated toxicity & Challenges for the industry

Making nature and technology work for you ©

T-cell receptor or CD3 complex

Making nature and technology work for you ©

T-cell receptor & MHC complex

Making nature and technology work for you ©

Making nature and technology work for you ©

1 - Natural anti-tumour T cells for Therapy

MANCHESTER 1824 The University of Manchester

Making nature and technology work for you ©

2 - Gene engineered - T cells for Therapy

Making nature and technology work for you ©

Gene engineered T cells for Therapy

Making nature and technology work for you ©

A brief history of the UoM CTU....

- Continue existing Gene therapy T Cell trials
- Develop novel cell therapy treatments for cancer and other diseases
- Must be effective, flexible and safe systems of cell engineering
 5 products simultaneously
- Develop and train staff
- Simple and effective Quality management system
- Modular processing methods that can be used across products
- MHRA IMP & MS specials licences

Making nature and technology work for you ©

Cellular Therapeutics Unit (CTU)

- Move away from classical clean rooms
- Isolator technology controlled aseptic environment
- Protects patients cells from infection or contamination
- Allows rapid decontamination with vaporised hydrogen peroxide without chemical residues
- Allows multi product processing

Cellular Therapeutics Unit - Trials

The University of Manchester

- CAR A Phase I Study of CD19 Specific T cells in CD19 Positive Malignancy
 - Up to 20 patients open to recruitment 6/20 treated response in 3/6
- TIL METILDA Randomised Phase II Study in Metastatic Melanoma to Evaluate the Efficacy of Adoptive Cellular Therapy with Tumour Infiltrating Lymphocytes (TIL) and Interleukin-2 Dose Assessment
 - Up to 90 patients Opened March 2014

• cellulartherapeutics with the EU FP7 ATTACK - consortium

- TCR NY-ESO-1/LAGE-1 peptide expressed in a subset of tumours: [1] ATTACK Trial 1 - Oesophagogastric cancer – single arm
 - Up to 28 patients across Opened Sep 2014
 [2] ATTACK Trial 2 Metastatic melanoma Standard vs Optimised manufacturing
 - Up to 42 patients Planned to open Q3 2015

Adoptive T cell Therapy for Cancer: CAR immunotherapy – anti-CD19 T cells

Natural T cell therapy - TIL

Adoptive T cell Therapy for Cancer: TIL Immunotherapy

CTU manufactured cell therapy for Metastatic Melanoma in MS special Aug 2012

Patient response 24 months

large mediastinal lymph node Cerebellar metastasis

Adoptive T cell Therapy for Cancer: TIL immunotherapy

Before cell therapy

6 weeks after cell therapy

CTU manufactured cell therapy for Metastatic Melanoma in MS special Jul 2013

Patient response 6+ weeks

- Sub cutaneous
- Lung
- Axillary disease

Adoptive T cell Therapy for Cancer:

TIL immunotherapy: 6 MS specials patients

Encouragingly all patients have had some tumour reduction so far...

Synovial sarcoma Adoptive Therapy with: TCR Immunotherapy therapy - NY-ESO-1 Engineered T Cells.

Baseline PET scan January 2, 2013 Day 101 April 19, 2013. Normal heart and tonsilar uptake

Courtesy of Dr Crystal L. Mackall

CAR service history

- September 2013 there were 111 protocols registered NIH
 - 104 of which targeted cancer, with more than 500 subjects dosed
 - 40 protocols address haematological malignancies & 34 targeting CD19
- Key factors:
 - The target antigen is expressed on the cell surface
 - Good clinical evidence in CD19+ tumors at multiple centres

Jacqueline Corrigan-Curay et al., Molecular Therapy, 22, 1564-1574

Making nature and technology work for you ©

TIL immunotherapy

- TIL
 - Isolation of TIL from tumour is complex and unpredictable
 - Unknown target difficult to prove specific functionality
 - trials using functional TIL did not correlate with efficacy
 - TIL therapy
 - Response in 40 to 50% of patients of which 20 to 35% CR
 - Current theory
 - highly mutated cancer > frequency of tumour specific T cells

Making nature and technology work for you ©

TCR immunotherapy

- TCR
 - HLA dependant
 - Patient must screen positive for HLA and antigen
 - High rate of screen fails
 - i.e. HLA-A2 approx. 40%
 - NY-ESO-1/LAGE-1 approx. 30-40% in Oesophago-Gastric cancer
 - 1 to 2 in every 10 screened
 - Evidence of activity in:
 - Melanoma Response 9/18 (CR 4/18)
 - Synovial sarcoma Response 10/16 (CR 0/16)
 - Multiple myeloma Response 13/20 (CR N/A)

Making nature and technology work for you ©

Toxicity associated with current T cell immunotherapy

- Systemic conditioning chemotherapy
 - Systemic conditioning chemotherapy lympho/neutropenia & sepsis
 - IL-2 Pulmonary oedema/fevers/riggers
- Off target activity effects of cancer immunotherapy:
 - TCR associated toxicity seen with high-avidity TCRs targeting off tumour epitope
 - MART-1, GP-100, CEA & MAGE-A3
 - CAR associated off target toxicity
 - Carbonic anhydrase (CA) IX Bile duct
 - -CEA
 - TIL
 - vitiligo & uveitis
- Active therapy in bulky tumours
 - Cytokine release syndrome
 - Tumour lysis syndrome

Making nature and technology work for you ©

Challenges for the industry

- Scale up to treat large numbers of patients
 - Just in time manufacturing
 - Shortage in manufacturing capability
 - Labour intensive facilities and processes
 - Secure supply of critical reagent & CoGs
- GMP vector for CAR & TCR therapy
 - Shortage in manufacturing capability
 - Cost barrier to do early phase trials
- Shortage of treatment centres
 - Intensive chemotherapy
 - High dose IL-2 management

Making nature and technology work for you ©

ATTACK

- Multicentre Phase II
 - 2 trials with up to 70 patients
 - Trial 1 Single arm
 Oesophago/gastric cancer with
 n=28 patients
 - Trial 2 Melanoma 2^{arm} n=42 patients
 - Centralised Production
 - Manchester & Amsterdam
 - Start Q3 2014

Making nature and technology work for you ©

Scale up requires scheduled manufacturing & treatment

NY-ESO-1 TCR T cells Phase II clinical trials – Oseophago/Gastic cancer & Melanoma

Making nature and technology work for you ©

Future of manufacturing?....in the CAR industry

- To date less than 1,000 patients treated globally
- High value products & clinical results have lead to a movement from chemical drugs to biotherapeutics to ATMPs
- Huge increase in pharmaceutical interest
- Regulations have adapted to industry requirements (e.g.):
 - ATMP regulations
 - Multi product manufacturing
 - Risk management principles (ICH Q9)

2014

CD19 trial timeline – lack of experience as an industry

NYESO-1 T cells – better understanding

Program Lead Robert Hawkins

Cellular Therapeutics Unit Ryan Guest

Natalia Kirilova Julie Duckworth - CTL Martine Thomas Fiona Baluwa - CTL

GMP assays & GCLP Clinical Monitoring Group Dominic Rothwell Debbie Burt

Experimental Cellular Therapy Group David Gilham Vicky Sheard Hannah Gornall Vania Baldan

CTU Design & Implementation Ryan Guest Nikki Price - CTL

Angela Osborne Clive Brooks Gavin Sutton

Acknowledgements

Clinical Cell Therapy

Fiona Thistlethwaite Was Mansoor Kerry Dunn Michelle Davies Jenny Haughton Lorraine Turner Tracey Heslop

Melanoma Group Paul Lorigan

Jackie Hodgetts

Christie Hospital

Andrea Spencer-Shaw Rita Dowse

Sponsor/Christie Clinical Trials Unit

Ian Emerson Phil Barley Angela Ball

GMP TIL manufacturing - Harmonisation Team

Bianca Heemskerk - NKI-AVL Joost vd Berg - NKI-AVL Marco Donia - CCIT/Herlev Hospital Ryan Guest - University of Manchester/Christie

NHS Foundation Trust

Research Management Nicola Price - CTL

Helena Kondryn

TIL Advisors

Mark Dudley Michal Besser

Surgeons

Aali Sheen Ajith Siriwardena Mark Jones Piotr Krysiak David Sherlock Deemesh Oudit Gary Ross Vijay Ramani

cellulartherapeutics°

