

Epsilon-gamma-delta-beta thalassaemia:- a rare cause of severe anaemia in newborns Dr Shirley Henderson Red Cell SIG 24th September BBTS Annual Conference Harrogate 2014

Oxford Biomedical Research Centre Enabling translational research through partnership

Haemolytic Disease of the New born

- Rh D allo-immunisation
- ABO incompatiblity
- Other RBC allo-immunisation
- RBC membrane disorders:- HS, HPP
- RBC enzyme defects:-G6PD, PK, others
- Haemoglobinopathies:- alpha thalassaemia major, unstable structural variants, εγδβ thalassaemia

Normal Haemoglobins

Hb A ($\alpha_2 \beta_2$) 95% of total

Hb $A_2(\alpha_2 \delta_2)$ <3.2% of total

Hb F ($\alpha_2 \gamma_2$) Predominant Hb in babies <1.0% in adults

Genetics of haemoglobin synthesis

Chromosome 11

Chromosome 16

Chromosome 11

Chromosome 16

Haemoglobin switching

The Haemoglobinopathies

1) Structural variants

mutation changes an amino acid in globin chain

Pathophysiology of thalassaemia

Thalassaemia trait

Normal red blood cells

Microcytic/hypochromic red blood cells

NR	α - ⁰ thalassaemia trait	β - ⁰ thalassaemia trait
Hb 12-17 g/dl	11.0	12.6
RBC 3.8-5.5X10 ¹² /I	6.8	6.3
MCV 83-101 fl	65	67
MCH 27-32pg	20.7	22.7
Hb A2 2.0-3.3%	2.3	6.5
Hb F <1.0%	0.5	1.9

β-thalassaemia major

Red Cell indices Hb 3-7g/dl MCV 50-60fl MCH 12-18pg

HPLC/electrophoresis: Only Hb F and Hb A2 present

HPFH & Delta beta thalassaemia

- Complete switching doesn't occur, gamma globin production remains at significant levels.
- HPFH:- Elevated levels of fetal haemoglobin with normal red cell indices
 - Point mutations e.g gamma gene promoter mutations
 - Deletion mutations
- Delta-beta thalassaemia:- Elevated levels of fetal haemoglobin with reduced red cell indices
 - Deletion mutations

Deletional beta thalassaemia/HPFH

HPFH deletions:- lack of beta globin completely compensated for by increased gamma production – clinically benign

Delta-Beta thalassaemia deletions:- some but not complete compensation for lack beta globin production – beta thal phenotype with low/normal Hb A2

Case study

- 4 day old baby, family origins Pakistan
- ? Hydropic, Hepatosplenomegally, severe anaemia requiring transfusion
- Morphology:- erythroblasts
- Retics :- 8.3%
- ? Non-deletional alpha thalassaemia ? Poly A mutations

Pre transfusion results

HB - 64g, RCC - 2.41, MCV - 92, MCH - 26.6, Hb F - 67.5%

Baby and parents

RBC - 6.03 MCH - 20.4 Hb A2 - 3.2% Hb F - 0.8%

HB - 64 RCC - 2.41 MCV - 92 MCH - 26.6, Hb F - 67.5

All 3:-

- Normal alpha and beta globin gene sequencing
- Negative results for alpha thalassaemia deletion mutations

MLPA

(Multiple Ligase dependent Probe Amplification)

Peak heights on capillary electrophoresis

Mother

Father and new born

 $\epsilon\gamma\delta\beta$ – thalassaemia deletion

Deletional beta thalassaemia/HPFH

Epsilon-gamma-delta-beta thalassaemia

- Presents as severe neonatal anaemia
- Transfusions often required
- Still birth and death shortly after birth have been described
- Resolves during first months of life (as haemoglobin switching occurs)
- Adult phenotype is similar to beta thalassaemia trait but with near normal A2 levels.
- ? Why so much more severe that beta thalassaemia trait
- Homozygous state has never been observed (most likely lethal)

Origin	Length (Kb)	Deletion group	Intrauterine presentation	LBW	Anemia and transfusion
Chilean	153	I	Intrauterine transfusion	NA	+
Croatian	>148	1		_	_
English III	114	1	_	_	+
English III	114	1	_	_	+
English IV	439	1	_	_	+
Canadian	>185	1	_	NA	+
Scottish Irish	205	1	_	_	+
Scottish Irish	100	1	_	_	+
Scottish Irish	198	1	Intrauterine transfusion	+	+
Mexican-American	>105	1	_	NA	+
lrísh	>205	1	_	+	+
Japanese	1400	1	_	_	_
France	100	1	Intrauterine transfusion		+
Pakistani	506	1	_	_	+
Anglo-Saxon	95.5	Ш	_	+	+
Dutch III	112	н	_	NA	+
English I	110	П	_	_	_
English II	98	I	_	_	_
Dutch	99	Ш	Still birth	NA	+
Hispanic	30	Ш	_	_	+
Dutch	>200	I	-	_	_
Norwegian	130	П	Intrauterine transfusion	+	+

Table 1 Origin, length, and presentation of previously described $\epsilon_{\gamma}\delta\beta$ -thalassemia deletions

European Journal of Haematology 90 (127-133)

A novel epsilon gamma delta beta thalassemia presenting with pregnancy complications and severe neonatal anemia

Hanna Shalev¹, Daniela Landau¹, Serge Pissard², Tanya Krasnov³, Joseph Kapelushnik¹, Oded Gilad⁴, Arnon Broides¹, Orly Dgany², Hannah Tamary⁵

Figure 1 Pedigree of Bedouin family with εγδβ-thalassemia. Affected family members are denoted by blackened symbols: males are denoted by squares, and females by circles. In all patients, excluding the three who were born dead or died immediately after birth, diagnosis was confirmed by DNA analysis. Patients known to be carriers by DNA analysis but with no detailed clinical picture available are denoted by gray symbols. The arrow marks the propositus.

Patient	Gender	Gestational age (wk)	IUGR	Oligohydramnios	Hb (gr/dL)	Blood transfusions (No.)	PPHN	Outcome
N-1	м	34	+	+	ND	ND	+	Died immediately
N-2	F	30	+	+	6	8-10	_	Mild anemia
N-3	F	32	+	+	6.2	6-8	_	Mild anemia
N-4	M	35	ND	+	ND	ND	ND	Stillborn
N-9	F	Term		_	10	6-8	+	Mild anemia
V-1	F	Term	_	-	5.6	2	+	Mild anemia
N-15	M	Term	ND	ND	10	No	_	Birth asphyxia died
N-16	M	29	+	+	5	8-10		Brain hypoxia
N-17	F	36	+	+	8.5	8-10	+	Mild anemia
V-4	F	Term	+	+	8.6	2	+	Mild anemia
Summary/mean			6/8	7/9	7.5 ± 2		5/9	

Table 2 Prenatal and neonatal manifestations of heterozygotes for $\epsilon\gamma\beta\delta$ -thalassemia

Hb, hemoglobin; PPHN, persistent pulmonary hypertension of the neonate; IUGR, intrauterine growth restriction; ND, no data.

• 12 affected infants

- 10 had prenatal and post natal complications :- all severely affected
- 2 (siblings) were asymptomatic at birth

A novel $(\epsilon\gamma\delta\beta)^\circ$ -thalassemia deletion associated with an α globin gene triplication leading to a severe transfusion dependant fetal thalassemic syndrome

Figure 1. Family pedigree and hematologic data. Individuals indicated by half-black shaded symbol presented neonatal hemolytic anemia and microcytosis and those with a half grey shade symbol presented anti-3.7 triplication α gene. Erythrocyte parameters of patient III2 were determined during fetal life. haematologica | 2009; 94(4)

- Triplicated alpha gene increases severity:- fetal hydrops
- Mother required transfusions during pregnancy – erythropoietic stress
- Found in all ethnic groups

Case Study

- 15 year old boy (mixed family origins)
- Hb 129, MCV 66.6, MCH 21.4., A2 2.9%, Hb F 0.4%
- Deletion of beta globin locus LCR
- No reported problems in the newborn period
- Mother "known thal carrier" repeated episodes of anaemia sometimes requiring transfusion

Summary

- Consider εγδβ thalassaemia in unexplained HDN
- Occurs in all ethnic groups
- Could also be a cause of hydrops and IUGR
- Co-existing increased alpha globin gene copy number will increase severity - ? Screen affected families for alpha CNVs
- Consider possibility of adult carriers having symptoms during period of erythropoietic stress (e.g. pregnancy)
- Considerable unexplained phenotypic variation

Acknowledgements

Red Cell Team Herminio Dariusz Matthew Mel Michelle Jenny

Oxford Biomedical Research Centre Enabling translational research through partnership

