Red Cell Alloimmunisation in Sickle Cell Disease and Thalassemia

Aleksandar Mijovic
Consultant Haematologist
King's College Hospital/NHSBT Tooting

Alloimmunisation to red cell antigens in SCD

Prevalence

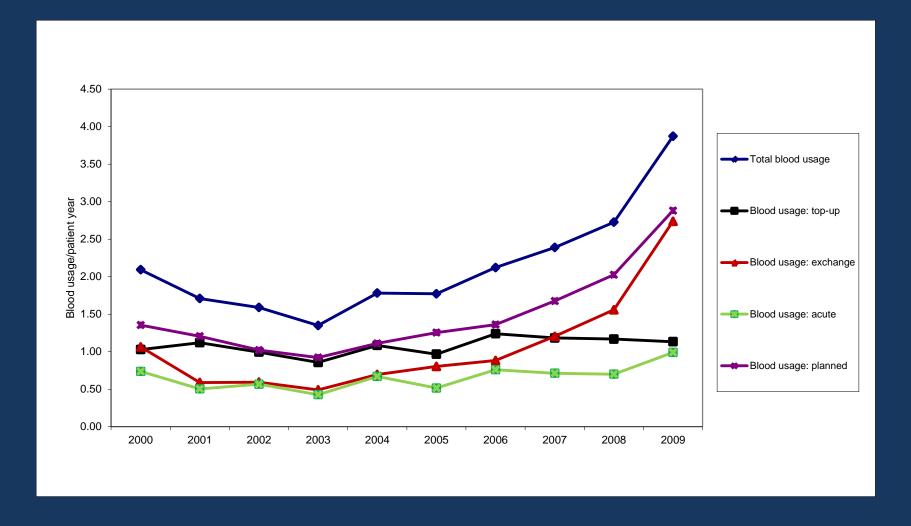
Prevalence 25% (8-35%)
 (Garratty et al 1997)

- Only 2.6% in a Jamaican cohort (Olujohungbe et al 2001)
- 6.1% in Uganda
 (Natakunda et al 2010)

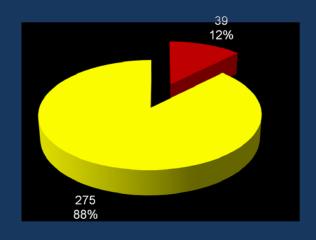
Causes

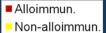
- Antigenic differences between recipients and donors
- Exposure
- Predisposing factors
 - genetic
 - chronic inflammatory state (elevated IL1,IL6,IFN-γ)

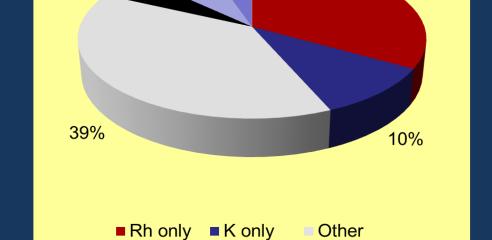
Blood group racial differences (modified


from Yazdanbakhsh ,Ware & Noizat-Pirenne 2012)

Blood antigen	Caucasian donors (%)	Black recipients (%)	
С	68	27	
K	9	2	
Fy(a)	66	10	
Jk(b)	74	49	
Partial antigens			
Partial D in D+	1	7	
Partial C in C+	0	30	
Low-incidence antigens			
VS (RH20)	0.01	26-40	
Rare blood groups			
U negative	0	1	
Hr ^B negative	0	0.1	


Alloimmunisation to red cell antigens - Individual susceptibility factors


- HLA system: DRB1*04 and DRB1*15 linked with anti-Fy^a formation
- DRB1*07:01 increases risk of anti-Dia formation (Baleotti W et al, Transfusion 2014)
- 2 SNPs in CD81 gene strongly associated with alloimmunisation (Tatari-Calderone Z et al, Clin Dev Immunol 2013)
- Weak T-reg (CD4+25+FoxP3+) cell activity also implicated in high rates of autoantibody formation in alloimmunized patients.


Blood usage for SCD patients at King's

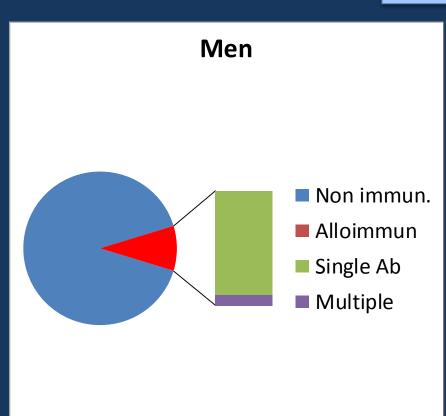
Alloimmunisation in SCD at King's

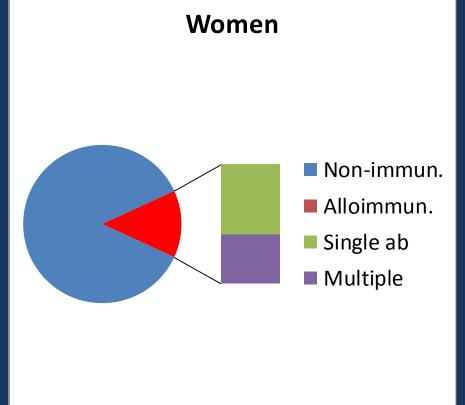
■ Rh+other ■ K+other

33%

5%

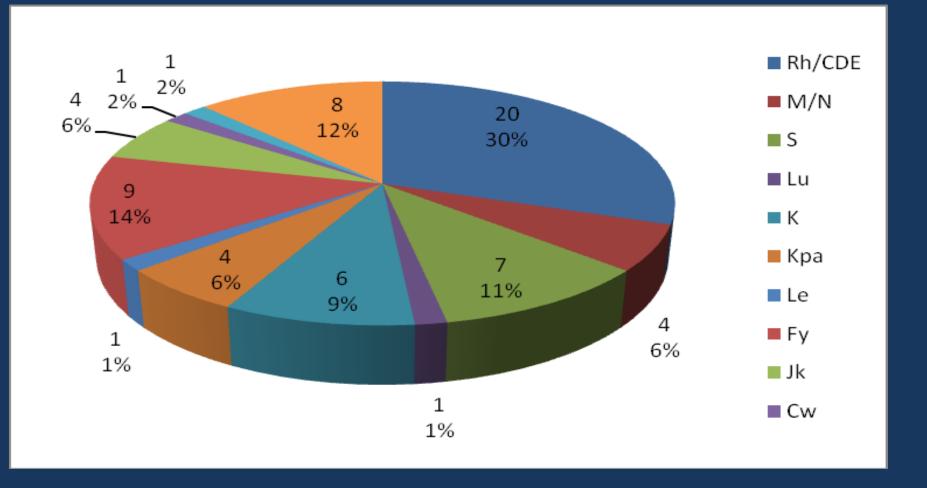
8%

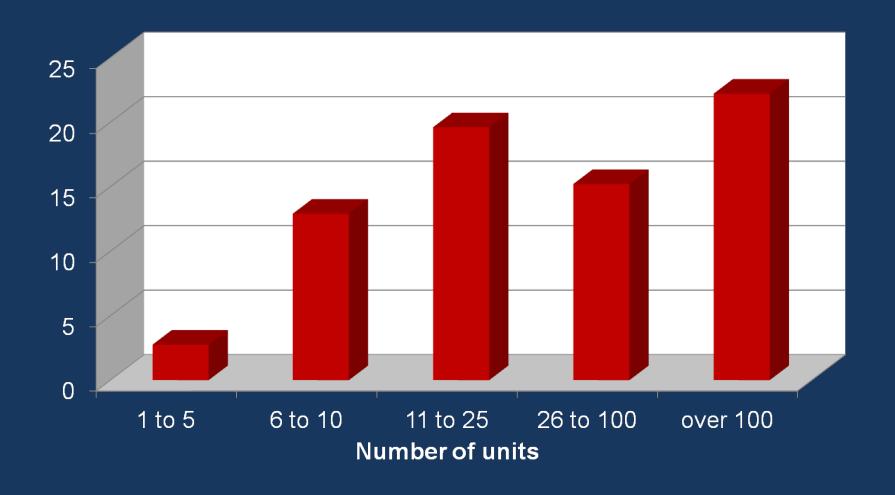

■Rh+K


Mijovic,Perera,Thein Transfusion 2013

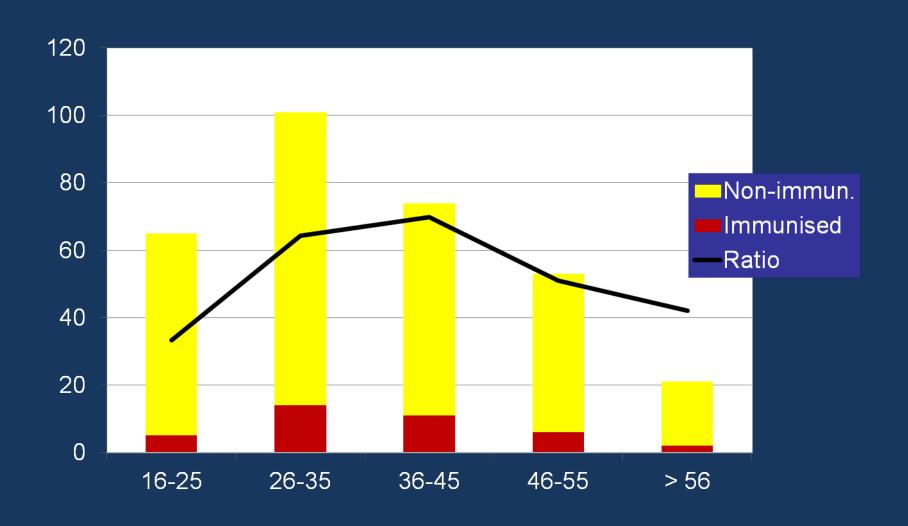
Alloimmunisation in SCD

KCH,2011


	Male	Female
Total	117	197
Alloimmunized	11(9.4%)	28 (14.2%)
Single Ab	10	17
Multiple Ab	1	11



Distribution of red cell antibodies in SCD patients


)					_				0.11
Rh	M/N	S	Lu	K	Kpa	Le	Fy	Jk	Cw	JS	Other
20	4	7	1	6	4	1	9	4	1	1	8

Alloimmunisation rate according to transfusion exposure

Proportion of alloimmunised patients by age group

"Untransfusable" patients

- Multiple alloantibodies, theoretical availability of blood < 1% (incl. only clinically significant antibodies)
- Antibodies against high frequency antigens
- Repeated DHTR

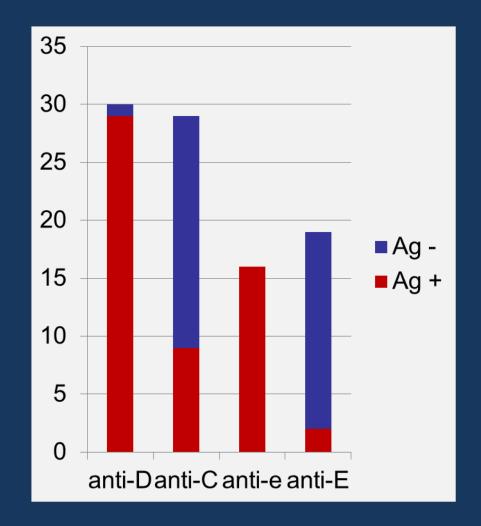
• Example: O, D+, anti-N, S,Fy^a,Fy3,Lu^a,Js^a,V,Vs.

Anti-U, anti-Hr^s, anti-Hr^B

= 4/39, i.e. 10% alloimmunised patients

RH/K IMMUNISATION: STILL HIGH DESPITE ANTIGEN MATCHING

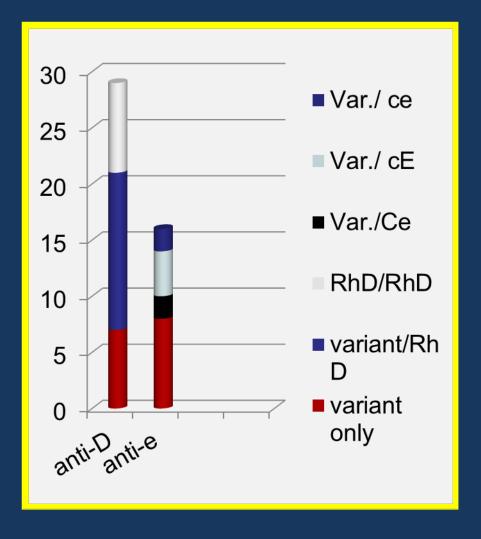
- Some patients alloimmunised before routine Rh/Kell matching was introduced
- Less stringent matching in emergencies
- Errors in blood selection
- Transfusions received in other centres
- High frequency of variant Rh genes


RHD and RHCE diversity in 226 patients with SCD. RH alleles identified in patients with SCD. Each gray box represents 1 of 10 exons in the RH genes.

RHD		# Alleles	Frequency
	Deleted D	52	0.115
	RHDψ	12	0.027
	DIIIa-CE(4-7)-D	21	0.046
	RHD conventional	235	0.520
	DAU0	74	0.164
	DAU3	8	0.018
	DAU4	2	0.004
	DAU5	9	0.020
	DIIIa	5	0.011
	DIVa	8	0.018
	DIVa-3	1	0.002
	Weak partial D 4.0		0.049
	DFR	1	0.002
	DAR	1	0.002
	D(48C)	1	0.002
RHCE*ce			
	ce conventional	100	0.221
	ce(48C)	87	0.192
	ce(733G)	63	0.139
	ce(48C,733G)	26	0.058
	ce(254G)	26	0.058
	ceS	26	0.058
	ceTI	14	0.031
	ceMO	7	0.015
	ceCF	3	0.007
	ceHAR	1	0.002
	ceJAL	1	0.002
	ceAR	1	0.002
	ceEK	1	0.002
	ceTI type 2	1	0.002
	ce(733G,1006T)	1	0.002
RHCE*Ce			
	Ce conventional	51	0.113
	CeRN	1	0.002
RHCE*cE			
	cE conventional	42	0.093

Chou S T et al. Blood 2013;122:1062-1071

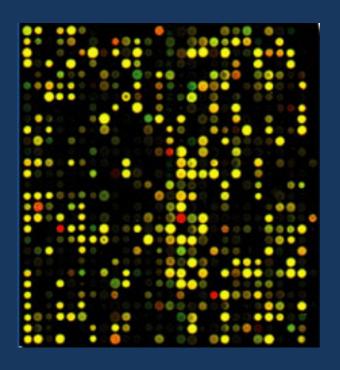
RBC antibodies


- 146 antibodies identified in 80 patients
- 94/146 (64.4%) Abs had specificity for D,C,E and e antibodies.
- 56 unexplained specificities in 45 pts who typed POS for corresponding antigen
- 35 unexplained spec. in 33 pts who typed NEG for corresponding antigen and received antigennegative units

Genetic diversity at RhD and RhCE loci

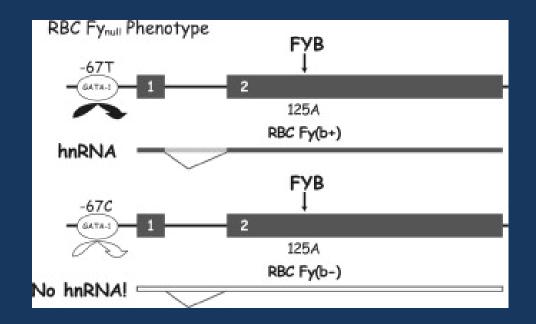
(Alloimmunised patients)

 72% RhCE*ce alleles, and 41% RhD alleles, were variant (nonconventional).



Extended phenotype matching

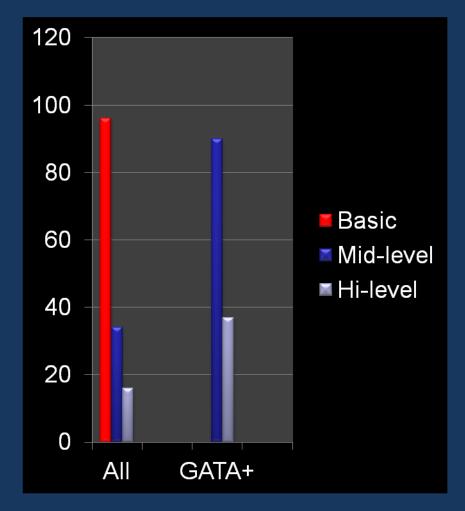
- Limited phenotype matching (ABO/D + C,c,E,e,K) prevents formation of 53% antibodies.
 - Availability 13.6%
- Extended matching (as above + S,Fy^a, Jk^b)
 prevents formation of 71% antibodies.
 - Availability 0.6%


Molecular genetic blood group analysis for all SCD patients?

GATA binding site mutation

Single nucleotide mutation in the FY*B gene promoter prevents GATA-1 binding, with consequent lack of FyB expression in erythroid cells (but not in other tissues).

Extended phenotype matching: effect on blood availability


1. Basic level match: ABO, DCcEe, K

2. Mid-level match:

1 + Fya, Fyb

3. High level match:

2 + Jka, Jkb, S, s

ALLOIMMUNISATION IN THALASSEMIA

Alloimmunisation to Red Cells in Thalassemia Major

- 3-5% in Italy (Sirchia et al 1985; Rebulla et al 1991)
- 20.8% in Oriental Thal patients in USA (esp. anti-K) (*Singer et al 2000*)
- 16.5% in USA, 13.3% in Asians vs 21.2% in Caucasians (*Thompson et al 2011*).
- Cheng CK et al (2012) found 20% alloimmunisation rate among regularly transfused Thal patients in Hong Kong

Ethnic differences in alloantibody frequency

Thompson et al 2011 (Asian 48%)

Cheng et al 2012 (Asian 100%)

Antibody	Frequency (%)
Anti-E	19.0
Anti-K	18.1
Anti-C	9.5
Anti-Jk ^a /Jk ^b	7.8
Anti-c	6.0

Antibody	Frequency (%)
Anti-E	39.3
Anti-Mi ^a /Mur *	30.8
Anti-c	13.1
Anti-Jk ^a	6.5
Anti-Fy ^a , -S, _Di ^a	1.9 each

^{* 15%} Chinese Mi^a antigen +; 6-7% positive for Mur antigen.

Alloimmunisation to Red Cells in Thalassemia Major (II)

- Splenectomy imparted higher risk of alloimmunisation (OR 1.85, CI 1.12-3.05)
- But not confirmed by MvLR in study by Vichinsky et al (*Transfusion* 2014; 54:972)
- The only predictive factor identified :
- Duration of regular transfusions: 20+ years

Summary

- Alloimmunisation still common in SCD and Thal, occasionally insurmountable problem.
- Rate of alloimmunisation to Rh antigens remains high despite matching of blood.
- Partly explained by variant blood group genes
- Blood group genotyping of SCD/Thal patients, and also selected donors, may help alleviate the problem in future