MALDI-TOF in Transfusion and Transplantation Medicine

Jennifer Allen

National Bacteriology Laboratory NHSBT Colindale, London

Thursday 25th September 2014

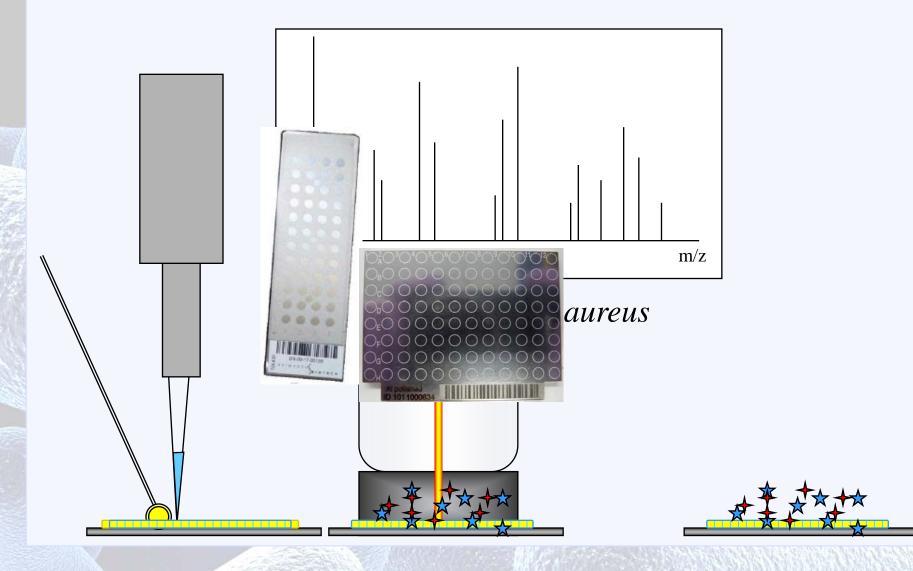
National Bacteriology Laboratory

Summary

- About the National Bacteriology Laboratory
- Introduction and the principles of MALDI
- The systems
- Development
- Benefits
- Aims of the study
- Methods
- Results
- The future

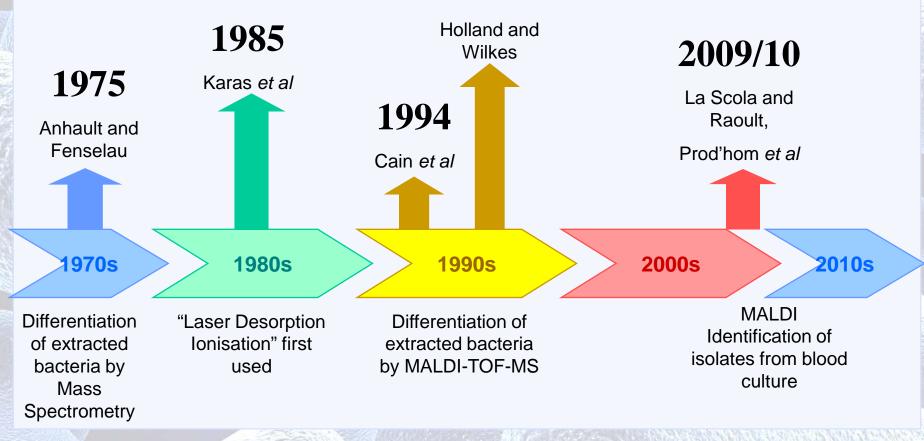
National Bacteriology Laboratory

National Bacteriology Laboratory


- Samples received:
 - Pre and post decontamination tissues samples
 - Cord blood, ASE and stem cell screening
 - Components involved in suspected TTI or visually abnormal products
 - Platelet screening samples (from Feb 2011)
 - Environmental monitoring isolates

- Identification of around 2500-3000 isolates/year
- Average ~50 samples/year sent to reference laboratory (PHE) for further work
- Current systems used for identification include BD Phoenix and BBL Crystal – phenotypic identification

National Bacteriology Laboratory


MALDI-TOF-MS <u>Matrix-Assisted Laser</u> <u>Desorption/Ionisation-Time of</u> <u>Flight-Mass Spectrometry</u>

National Bacteriology Laboratory

Development History

1996

National Bacteriology Laboratory

Principles of Analysis

- Many spectral peaks from bacterial proteins

 Other biomolecules may also be present
- >50% ribosomal proteins
- Many ribosomal proteins are species specific
 16S rRNA sequencing used in identification
- Basic in nature, possibly improving ionisation

 allows binding to RNA

Vitek MS

4 components:

- Vitek MS: MALDI analysis
- Prep station: input target slide information
- Acquisition station: Display spectra
- Myla middleware: Manages workflow and sends identification results
- Database: >25,000 spectra for clinically relevant organisms
 - Clinical and reference strains grown under a range of conditions
- Instrument can analyse 4 target slides per run
 - 48 sample spots per slide, divided into 3 groups of 16 with a central *E. coli* control

National Bacteriology Laboratory

Results presentation

ID scored based on match to references

- 99.9 = perfect match (1 option)
- 60-99.8 = Good match (1 option, or 2-4 for low discrimination results)
- "No ID" for those that could not be matched
- Also represent results visually
 - green square = good match, 1 probable species
 - orange triangle = low discrimination result, >1 possible species
 - Red circle = no peaks, no match for ID

National Bacteriology Laboratory

Number of identifications: 8

List of identifications

Position	Analysis Date 🥃	Organism Name 🕃	Confidence Value O Confidence Level			ion company	on message(s)	
D2	12/14/12 4:21 PM	Lactobacillus paracaséi	99.9					
D2	12/14/12 4:21 PM	Lactobacillus casei	99.9					
D3	12/14/12 4:21 PM	Lactobacillus casei	99.9	99.9				
D3	12/14/12 4:21 PM	Lactobacillus paracasei	99.9					
D4	12/14/12 4:21 PM	Lactobacillus paracasei	23,000 99.9 22,000 21,000					
D4	12/14/12 4:21 PM	Lactobacillus casei	20,000 19,000 19,000 18,000 17,000					
E1	12/14/12 4:40 PM	Lactobacillus paracasei	99.9 (1) 16,000 15,000 14,000 13,000 11,000 11,000 11,000					
E1	12/14/12 4:40 PM	Lactobacillus casei	99.9 99.9 99.9 11,000 10,000 9,000 9,000					
			5,000 5,000 5,000 4,000 3,000					
			2,000					00 8,000 8,500 9,0

National Bacteriology Laboratory

Bruker Biotyper

- Bench-top system
- Input sample info from LIMS, MS Excel spreadsheet or barcode reader to a separate computer
- Database comprising 5267 spectra
 - Multiple spectra from reference strains under the same conditions
- Analysis in <30 minutes
- Option for disposable (48 spot) or reusable (48 or 96 spot) target slides

National Bacteriology Laboratory

Results Presentation

• ID result is scored based on match with reference data

- 2.300-3.000 (+++) = highly probable species ID
- 2.000-2.299 (++) = probable species, secure genus
- 1.700-1.999 (+) = probable genus
- <1.699 (-) = No ID
- Also categorised based on consistency
 - A (to species), B (to genus), C (no consistency)
- Top 2 matches for each sample are displayed
 Top 10, indicating closest match, can also be shown

National Bacteriology Laboratory

Result Overview

m perfringens m perfringens	2.341 2.518		dium perfringens	2.263		
n perfringens	2.518	1-1-1-1-				
no cano.		Clostri	dium perfringens	2.392		
des fragilis	<u>2.399</u>	Bact	eroides fragilis	2.356		
ides fragilis	2.418	<u>2.418</u> Bacteroides fragil		2.387		
us subtilis	1.733	. B		1		
us subtilis	1.802					
	2.444	Strept	<u>╷╷</u> ╇╷╷ <mark>┝</mark> ╷╖		∳⊥	-
		cus pyogenes 2.444				

National Bacteriology Laboratory

NHS Blood and Transplant

I

Development

 Direct analysis from blood culture bottles and urine samples

- Detection of resistance profiles

 E.g. MRSA and ESBLs
- Strain typing

National Bacteriology Laboratory

How will this help NBL?

- More rapid than current techniques (BD Phoenix and BBL Crystal)
 - Improve sample TAT
- Lower cost ID per sample
- Multiple isolates can be analysed in one go
- Reduce number of isolates sent to reference laboratory for confirmation

National Bacteriology Laboratory

System Evaluation using NBL isolates

Aims:

- To assess the performance of each system using previously identified NBL isolates
- To compare the performance, ease of use and system requirements, to determine suitability for use within the lab

Methods

- Panel of 164 wild-type isolates from NBL cryobank (-80°C storage)
 - Tissues, platelets, transfusion reactions, stem cells/cord bloods
- Incubated for 24-72 hours 35°C prior to testing
- Tested in triplicate on both systems

National Bacteriology Laboratory

Methods

- Testing was repeated on the same system for any samples that did not match the NBL ID to species level
- Samples were also sent for 16S sequencing identification
- Results compared against NBL/16S ID to determine performance

National Bacteriology Laboratory

Results: Initial Testing

		Total Tested	Consistent to Species	%	Consistent to Genus	%	Not consistent	%	No ID assigned	%
MS	Initial analysis	164	89	54.3	131	79.9	26	15.9	7	4.3
Vitek	Repeat analysis	75	14	18.7	50	66.6	21	28.0	4	5.3

yper	Initial analysis	164	94	57.3	134	81.7	18	11.0	12	7.3
Bioty	Repeat analysis	70	6	8.6	48	68.6	17	24.3	5	7.1

 "Repeat analysis": the total no. samples not consistent with NBL to species level that underwent further analysis on the system

National Bacteriology Laboratory

Comparison with 16S ID

	Total Tested	Consistent to Species	%	Consistent to Genus	%	Not consistent	%	No ID assigned	%
Vitek MS	75	59	78.7	6	8.0	6	8.0	4	5.3
Biotyper	70	59	79.5	3	4.1	3	5.5	5	6.8

- Only isolates that did not match NBL species on initial testing were analysed
- 35 isolates could not be confirmed by 16S
 - Reported by PHE to genus level only
- Probable species were taken into account (99% homology)

National Bacteriology Laboratory

Overall performance

	Total Tested	Consistent to Species	%	Consistent to Genus	%	Not consistent	%	No ID assigned	%
Vitek MS	164	152	92.7	155	94.5	7	4.3	2	1.2
Biotyper	164	155	94.5	158	96.3	4	2.4	2	1.2

- Results of repeat analysis used for any isolates that did not match NBL ID on initial testing.
- Repeat result also compared with 16S.
- 16S was the gold standard

National Bacteriology Laboratory

Discussion

- Overall consistency of 92.7% (Vitek MS) and 94.5% (Bruker)
- Isolates that grew well within 24 hours were more easily identified by the systems
 - E.g. S. aureus, E. coli, Bacillus spp.
- Many isolates that were not consistent to NBL included CNS and α-haemolytic Streptococci (mitis group)
 - Species very closely related with conserved ribosomal proteins
 - α-haemolytic Streptococci generally identified as *S. pneumoniae* by Bruker and *S. mitis/oralis* by Vitek MS

- Other considerations:
 - Working temperature
 - Space required
 - Additional equipment, e.g. fume hood, consumables
 - Disposable vs. re-useable target plates
 - Quality assurance
 - Database limitations
 - Need for additional tests

Summary

- MALDI provides rapid, specific, low cost ID
- Comparison of performance showed similar results for each
- Limitations to both systems
- Problems with ID of α-haemolytic Streptococci

National Bacteriology Laboratory

The future

 Analysis of a wider range of environmental strains using MALDI

Direct analysis of blood culture bottles

• Purchase a MALDI-TOF system

National Bacteriology Laboratory

Acknowledgements

Carl McDonald - National Bacteriology Laboratory

John Girdlestone – H&I, Colindale

Jane Turton – Public Health England, Colindale

Eileen Flatley and Erika Tranfield – Bruker

Karen Hayter and Nicholas Aldred – Biomerieux

National Bacteriology Laboratory

References

Anhalt, J.P., Fenselau, C., (1975) Analytical Chemistry 47 (2) p219-225

Drancourt, M., (2010) Clinical Microbiology and Infection 16 (11) p1620-1625

Ferreira, L., Sánchez-Juanez, F., González-Ávila, M., et al., (2010) Journal of Clinical Microbiology 48 (6) p2110-2115

Heller, D. N., Murphy, C. M., Cotter, et al., (1988) Analytical Chemistry 60 (24) p2787-2791

Holland, R. D., Wilkes, J. G., Rafii, F., et al., (1996) Rapid Communications in Mass Spectrometry **10** (10) p1227-1232

Holland, R. D., Duffy, C. R., Rafii, F., et al (1999) Analytical Chemistry 71 (15) p219-225

Karas, M., Bachmann, D., Hillenkamp, F., (1985) Analytical Chemistry 57 (14) p2935-2939

Krishnamurthy, T., Ross, P. L., (1996) Rapid Communications in Mass Spectrometry 10 (15) p1992-1996

Mazzeo, M. F., Sorrentino, A., Gaita, M., et al., (2006) Applied and Environmental Microbiology 72 (2) p1180-1189

National Bacteriology Laboratory