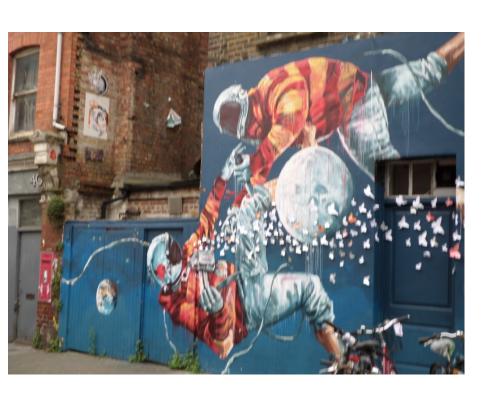
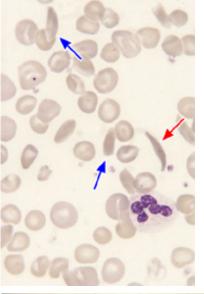
To be'e' or not to be'e'? – that is the question

Dr Shubha Allard
Consultant Haematologist
Barts Health NHS Trust &
NHS Blood and Transplant



Case


- 17 year old female
- Sickle cell anaemia (HbSS)

Sickle cell anaemia

Chronic anaemia
Acute exarcebation anaemia
haemolysis
Sequestration
Aplastic

Painful crisis – dactilitis, acute painful bony crises

Acute chest syndrome

Stroke

Infections
Hyposplenism
Priapism, Leg ulcers

Pulmonary hypertension Renal disease

Pregnancy, surgery

SCD and neurological disease

Stroke Prevention Trial in Sickle Cell Anemia (STOP)

 in asymptomatic high-risk children with Transcranial doppler (TCD) velocities >200 cm/s regular blood transfusions resulted in 90% reduction in first stroke

Silent Infarct Study (SIT) NEJM 21st Aug 2014

- A third of children with SCD have silent infarcts on MRI
- Randomised children aged 5 -15 years with silent infarct to standard therapy vs transfusion for 3 years
- 58% reduction in stroke or recurrence silent infarct with transfusion

Case 17 year old female

- Sickle cell anaemia (HbSS)
- Painful crises
- US gallstones
- 2005 CMV infection anaemia needing Transfusion
- Penicillin and Folic Acid; Pneumovax
- For analgesia Paracetamol, Ibuprofen or Diclofenac, Codeine.

Progress

- Transcranial Dopplers from 2005: Standard Risk
 - due repeat early December 2009
- Dec 2009 C/O pain R foot, problems with gait
- Repeat Transcranial Dopplers now showed <u>High risk</u> velocities

MRI & MRA

 left frontal cortical ischaemia and left lentiform nucleur ischaemia, deep watershed ischemic lesions left and right hemispheres.

Commenced transfusion regime

maintain sickle haemoglobin percentage <30%

Special requirements Haemoglobinopathy

- Alloimmunisation risk SCD reported 20–35% or higher
 - Risk haemolytic transfusion reactions
 - Multiple and complex antibodies can result in significant delays in sourcing appropriate red cells units
- Extended phenotyping prior to transfusion or genotyping if transfused
 - C, c, E, e, K, k, Jka, Jkb, Fya, Fyb, MNS
- Transfuse red cells matched for Rh (D, C, c, E, e) and K antigens
- Antigen negative for current or historical red cell antibodies that are clinically significant
- Age of blood
 - Top up <14 days; exchange (SCD) <7 days
 - HbS negative

Transfusion regime

- 13.01.10 Ab Screen Negative ARhD neg (r'r)
- Flag in Laboratory system special requirements
- A rr K negative units
- November 2011 In-dwelling Portacath for venous access
- Aug 2012 Portacath frequently blocked
- 16.04.12 Ab Screen positive
- Initially just anti Kpa but then.....

NHSBT report 2012

A RhD negative

DAT

PS	lg G	lgA	IgM	C3c	C3d	Control
	1+	O	0	0	0	O

Red Cell Antibody Results

Specificity	Technique	Sample Type
Anti-K	IAT	Plasma
Anti-Kpa	IAT	Plasma
Anti-e	Polybrene technique	Plasma
	Anti-K Anti-Kpa	Anti-Kpa IAT

These antibodies are clinically significant.

No additional alloantibodies were detected.

Select ABO compatible, (and HT-, if not ABO identical), D-, C-, E-, K-, Kp(a-) red cell units for crossmatching. An eluate prepared from the patient's cells contained a pan-reactive autoantibody detected by IAT.

An antibody card for this patient is enclosed.

Joint case review - clinical and laboratory teams

- 2013 Poor increment in Hb and poor suppression of HbS level
- Further Red cell serology review
- Samples send to IBGRL

IBGRL results and commentary

- Ala85Gly mutation suggesting that she has an RHCE*ceAG gene.
- That is, that she is heterozygous for RHCE*ceAG and for a d(C)ces haplotype.
- RHCE*ceAG produces abnormal e and hrB antigens
- It is possible that this patient could be capable of making alloanti-elike and an alloanti-Hr-like antibody.
- 'but this does not help you very much with transfusing this patient'
- Chou et al British Journal of Haematology 2012159, 304-404
- Challenges of alloimmunisation in patients with haemoglobinopathies

Feb 2013

- Discussed hydroxyurea
- Transfusion stopped
- Overall well on hydroxyurea good HbF response

Feb 2014

- 1/52 hx gastro-intestinal illness following family party
- 1/7 history generalised pain
- O/E unwell, jaundiced, tachycardia, tachypnea, hypotensive, pyrexial, bilateral reduced air entry, hepatomegaly
- Severe sepsis -requiring fluid resuscitation, HDU admission, IV antibiotics, noradrenaline
- Salmonella septicaemia confirmed
- Worsening respiratory failure, deranged LFT, renal impairment

Deterioration

- CXR extensive bilateral consolidation
- ECHO normal LV function; hyperdynamic LV circulation
- RR ~50 on CPAP; Hyperpyrexial; Hb dropping
- Portacath removed, exchange transfusion
 Arr, Kneg, Kpa neg units, IVIG cover
- Intubated, ventilated, increasing PEEP required

Further deterioration

- Decision to transfer to Papworth for ECMO
- Transfusion discussion NHSBT RCI re selection of units
 Arr Kneg, Kpa neg, IVIg cover

Improvement!

- D12 Improved
- Repatriated to RLH; extubated, short trial on CPAP
- Rehabilitation on paediatric ward Discharged home March 2014
- Further Progress
 - 2 further transfusions Arr Kneg Kpa neg blood without IVIG cover
 - Venous access difficult
 - Transferred back onto Hydroxyurea
- Currently remains an outpatient on regular review

Discussion

- Hb SS Increasing indications for transfusion
 - STOP study and now SIT Study (NEJM Aug 2014) for cerebrovascular disease
- Special requirements for SCD patients in relation to Transfusion
- Risk of alloimmunisation in SCD
- Implications of 'e' variant to transfusion management
- Other challenges with transfusion in SCD patients chelation, venous access

Acknowledgements

- Dr Banu Kaya & Dr Paul Telfer Royal London Hospital
- Paul Grist Tx lab manager Royal London Hospital & Colin Barber
- NHSBT RCI team at Colindale
- Fiona Regan, NHSBT
- IBGRL